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Abstract

In “Branes, Bundles and Attractors: Bogomolov and Beyond”, by Douglas, Reinbacher and Yau, the authors state the following
conjecture: Consider a simply connected surface X with ample or trivial canonical line bundle. Then, the Chern classes of any
stable vector bundle with rank r ≥ 2 satisfy 2rc2 − (r − 1)c2

1 −
r2

12 c2(X) ≥ 0. The goal of this short note is to provide two sources
of counterexamples to this strong version of the Bogomolov inequality.
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1. Introduction

In [2] Douglas, Reinbacher and Yau state several conjectures arising from the attractor mechanism in type II
string theory concerning possible Chern classes of stable vector bundles on algebraic varieties. In particular, the paper
contains the following conjecture which is a slight strengthening of the Bogomolov inequality.

Conjecture 1.1. Consider a simply connected surface X with ample or trivial canonical bundle and let H be an
ample line bundle on X. Then, the Chern classes of any µH -stable vector bundle of rank r ≥ 2 satisfy

2rc2 − (r − 1)c2
1 −

r2

12
c2(X) ≥ 0.

On the basis of physical evidence, this conjecture was first stated for Kähler manifolds of dimension n in a
preliminary version of Douglas, Reinbacher and Yau’s paper. In [5] Jardim provides examples that show that the
conjecture does not hold for stable vector bundles on Calabi–Yau threefolds. In a revised version of the paper of
Douglas, Reinbacher and Yau, the original conjecture was replaced by the above statement concerning the Chern
classes of stable vector bundles on simply connected surfaces with ample or trivial canonical bundle. The goal of this
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paper is to prove that the reformulated version is also false. We will provide two kinds of examples. The first one (see
Proposition 2.1) concerns rank r ≥ 2 vector bundles on a generic K 3 surface X (i.e. on a generic algebraic surface
X with q(X) = 0 and trivial canonical line bundle). The second one (see Proposition 3.2) is devoted to rank r ≥ 3
vector bundles on a surface X in P3 of degree d ≥ 7 (and hence its canonical line bundle is ample).
Terminology: Let H be an ample line bundle on a smooth projective algebraic surface X . For a torsion free sheaf F
on X we set

µ(F) = µH (F) :=
c1(F)H
rk(F)

.

The sheaf F is said to be µH -semistable if

µH (E) ≤ µH (F)

for all non-zero subsheaves E ⊂ F with rk(E) < rk(F); if strict inequality holds then F is µH -stable. Notice that
for rank r vector bundles F on X with (c1(F)H, r) = 1, the concepts of µH -stability and µH -semistability coincide.

Recall that for any rank r vector bundle F on a cyclic variety X with Pic(X) generated by h, there is a uniquely
determined integer kF such that if c1(F(kF h)) = c1h, then −r + 1 ≤ c1 ≤ 0. We set Fnorm = F(kF h).

2. First example

The goal of this section is to see that Conjecture 1.1 fails for µH -stable rank 2 vector bundles on generic K 3
surfaces with trivial canonical line bundle. To this end, let X be a complex algebraic K 3 surface, that is X is a
complete regular surface with trivial canonical line bundle and irregularity q(X) = 0. According to [7], we will say
that a vector bundle E on X is exceptional if

dim Hom(E, E) = 1 and Ext1(E, E) = 0,

i.e., E is simple and rigid. Any coherent sheaf F on X has associated a Mukai vector

v(F) =

(
r, c1,

c2
1
2

+ r − c2

)
where r = rank(F) and c1, c2 denote the first and second Chern classes of F . A Mukai vector is called exceptional if
according to the inner product defined in the Mukai lattice (see [8]) the following equality holds:

v(F)2
= c2

1 − 2r

(
r − c2 +

c2
1
2

)
= −2.

When X is a K 3 surface, c2(X) = 24. Indeed we have

2 = χ(OX ) =
1

12
(K 2

X + c2(X)) =
c2(X)

12
.

So, in that case Conjecture 1.1 is equivalent to saying that the Chern classes of any µH -stable vector bundle of rank
r ≥ 2 satisfy

2rc2 − (r − 1)c2
1 − 2r2

≥ 0.

Let us see that there exist infinitely many µH -stable vectors on a generic K 3 surface whose Chern classes do not
satisfy the inequality above. First of all notice that if X is a generic K 3 surface then Pic(X) ∼= Z.

Proposition 2.1. Let X be a generic K 3 surface and let H be an arbitrary ample line bundle on X. For any Mukai

vector v = (r, c1,
c2

1
2 + r − c2) such that (r, c1 H) = 1 and

2rc2 − (r − 1)c2
1 = 2r2

− 2

there exists a µH -stable rank r vector bundle E on X with Mukai vector v(E) = v.
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Proof. By [7], Theorem 2.1, for any Mukai exceptional vector v = (r, c1,
c2

1
2 + r − c2), there exists a µH -semistable

vector bundle E on X with v(E) = v. By assumption, (r, c1 H) = 1, so the notions of µH -semistability and
µH -stability coincide. Following the definition of Mukai exceptional vector, we get that for any of these vectors

v = (r, c1,
c2

1
2 + r − c2) such that (r, c1 H) = 1 and

2rc2 − (r − 1)c2
1 = 2r2

− 2

there exists a µH -stable rank r vector bundle E on X with Mukai vector v(E) = v. �

Therefore we have proved the existence of infinitely many µH -stable vector bundles E on a generic K 3 surface
with Chern classes contradicting the inequality predicted in Conjecture 1.1.

3. Second example

The goal of this section is to see that Conjecture 1.1 fails for µH -stable rank r ≥ 3 vector bundles on degree d ≥ 7
surfaces in P3. As a main tool we will use the theory of monads introduced by Horrocks in [4] and developed by the
authors in [1]. In order to do that, let X be a surface of degree d ≥ 7 in P3 and denote by h the restriction to X of the
hyperplane section H of P3. Recall that the Picard group of X is generated by h, K X = (d − 4)h is ample, h2

= d
and K 2

X = (d − 4)2d . In addition,

Pg(X) =
(d − 1)(d − 2)(d − 3)

6
and Pg(X) + 1 =

1
12

(K 2
X + c2(X)).

Lemma 3.1. For any integer c ≥ 2, there exists a monad on X of the following type:

M• : 0 −→ OX (−h)c−1 α
−→ O2c+1

X
β

−→ OX (h)c
−→ 0

whose cohomology sheaf E = Ker(β)/Im(α) is a rank 2 vector bundle on X.

Proof. Set P3
= Proj(k[x0, x1, x2, x3]). Without loss of generality we may assume that X is the surface in P3 defined

by f (x0, . . . , x3) = xd
0 + xd

1 + xd
2 + xd

3 . Consider the (c + 1) × c, c × c, and (c + 1) × (c + 1) matrices given by

A1 =


x0 x1 0 0 · · · · · · 0
0 x0 x1 0 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · · · · · · · x0 x1



A2 =


x2 0 0 · · · 0
0 x2 0 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · · · · x2

 , A3 =


x2 0 0 · · · 0
0 x2 0 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · · · · x2

 .

Define the complex

0 −→ OX (−h)c+1 γ
−→ O2c+1

X
β

−→ OX (h)c
−→ 0 (3.1)

where β is the map given by the matrix B = (A1 A2) and γ is the map given by

A =

(
A3

−A1

)
.

It is not difficult to see that γ degenerates in codimension 1. Now consider a sufficiently general injection φ :

OX (−h)c−1
−→ OX (−h)c+1 and its composition with the map γ defined in (3.1). If φ is general enough, γφ

degenerates in codimension 3. Hence, by [6], Proposition 4, we get a monad

M• : 0 −→ OX (−h)c−1 γφ
−→ O2c+1

X
β

−→ OX (h)c
−→ 0

whose cohomology sheaf E = Ker(β)/Im(γ φ) is a rank 2 vector bundle. �
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For any integer c ≥ 2, let

M• : 0 −→ OX (−h)c−1 α
−→ O2c+1

X
β

−→ OX (h)c
−→ 0

be a monad given by Lemma 3.1. Denote by T = Ker(β) and by K its dual. Since T is a rank c + 1 vector bundle on
X , K is also a rank c + 1 vector bundle on X and has Chern classes c1(K ) = ch and c2(K ) =

c(c+1)d
2 . For any c ≥ 2

and d ≥ 7,

2c2
+ c < (c2

+ 2c + 1)
d2

− 4d + 6
12

and hence

2rk(K )c2(K ) − (rk(K ) − 1)c1(K )2 <
rk(K )2

12
c2(X).

Let us see that K is stable. By applying Hoppe’s criterion ([3], Lemma 2.6), it is enough to see that

H0

((
q∧

K

)
norm

)
= 0, 1 ≤ q ≤ rk(K ) − 1 = c.

First of all let us consider the case q = 1. Since c1(K ) = ch, (K )norm = K (th) for some t ≤ −1. Hence it is enough
to see that H0(K (−h)) = 0 which easily follows from the cohomological exact sequence associated with

0 −→ OX (−h)c
−→ O2c+1

X −→ K −→ 0. (3.2)

Let us now assume 2 ≤ q ≤ c. Notice that for any 0 ≤ t ≤ c − 2,

µh

((
t+2∧

K

)
((−t − 1)h)

)
= (2 + t)µh(K ) − (t + 1)h2

=
(c − t − 1)

c + 1
d > 0.

Hence (
∧t+2 K )norm = (

∧t+2 K )( jh) for some j ≤ −t − 2 and thus it is enough to see that

H0

((
t+2∧

K

)
((−t − 2)h)

)
= 0. (3.3)

We will prove (3.3) by induction on t . Let us assume t = 0. The display of the monad M• gives us the following two
short exact sequences:

0 −→ OX (−h)c
−→ O2c+1

X −→ K −→ 0, (3.4)

0 −→ E∗
−→ K −→ OX (h)c−1

−→ 0 (3.5)

where by Lemma 3.1, E is a rank 2 vector bundle on X . The second exterior power of the exact sequence (3.5) twisted
by OX (−2h) gives us the following long exact sequence:

0 −→

2∧
(E∗)(−2h) −→

2∧
(K )(−2h) −→ K (−h)c−1

−→ S2(OX (h)c−1)(−2h) −→ 0. (3.6)

Since E is a rank 2 vector bundle,

H0

(
2∧

(E∗)(−2h)

)
= H0(OX (c1(E∗) − 2h)) = H0(OX (−h)) = 0

and for the case q = 1 we have H0(K (−h)) = 0. Thus, using the exact sequence (3.6) we deduce that H0((
∧2 K )

(−2h)) = 0 which finishes the case t = 0. For t > 0, twisting by OX ((−2 − t)h) the (t + 2)-exterior power of the
exact sequence (3.5), we get the long exact sequence

0 −→

2+t∧
(K )((−2 − t)h) −→

1+t∧
(K )((−1 − t)h)c−1

−→ · · · .
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By the inductive hypothesis H0((
∧t+1 K )((−t − 1)h)) = 0. Therefore,

H0

((
t+2∧

K

)
((−t − 2)h)

)
= 0

which concludes the proof of the stability of K .
Putting this together we get the following result:

Proposition 3.2. Let X be a smooth surface of degree d ≥ 7 in P3. Then, there exists a rank r ≥ 3 vector bundle F
on X with Chern classes c1(F) = c1 and c2(F) = c2 verifying

2rc2 − (r − 1)c2
1 −

r2

12
c2(X) < 0.

Proof. Set F to be equal to the vector bundle K from above. �

Notice that since any smooth surface X ⊂ P3 of degree d ≥ 7 is an algebraic surface with ample canonical line
bundle, Proposition 3.2 provides us with an infinite family of examples contradicting Conjecture 1.1.

4. Final remark

Notice that the vector bundles E given in Proposition 2.1 are points of a trivial moduli space, that is of a zero-
dimensional moduli space. On the other hand, vector bundles given in Proposition 3.2 are points of a nontrivial moduli
space. Indeed, following the above notation let us prove that Ext1(K , K ) 6= 0. Let us assume that Ext1(K , K ) = 0.
Twisting by K the short exact sequence

0 −→ K ∗
−→ O2c+1

X −→ OX (h)c
−→ 0

and taking cohomology we get

0 −→ H0(K ∗
⊗ K ) −→ H0(O2c+1

X ⊗ K ) −→ H0(OX (h)c
⊗ K ) −→ H1(K ∗

⊗ K ) → · · · .

We know that K is a stable vector bundle, and hence it is simple, i.e. h0(K ⊗ K ∗) = 1, and by assumption
0 = Ext1(K , K ) = H1(K ⊗ K ∗). Thus

(2c + 1)h0(K ) = 1 + ch0(K (h)). (4.1)

On the other hand, using the exact sequence (3.2) we deduce that h0(K ) = 2c + 1 and h0(K (h)) = 7c + 4 which
contradicts (4.1). Therefore, Ext1(K , K ) 6= 0 and indeed the corresponding moduli space is nontrivial.

We want to point out that with Proposition 3.2 we not only provide counterexamples to the quoted conjecture of
Douglas, Reinbacher and Yau but also provide counterexamples to a reformulated version of the Conjecture 1.1 stated
recently by the same authors in the fourth version of [2].
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